Git, a distributed
revision control

Free Electrons

SySte m Embedded Linux

Developers

Thomas Petazzoni
Free Electrons
thomas. petazzoni@free-

electrons.com

Version control, centralized vs. distributed

v

v

Git local and basic usage

Details on Git internals

v

v

Working with branches

v

Working with remotes in Git
Contributing with Git

Some advanced features

v

v

» This is not a complete Git presentation: there are aspects of
Git | have never used, so | won't talk about them.

» | am not a Git expert, only a basic user. | use Git on a daily
basis since two years to contribute to Buildroot, so | know the
worflow of a contributor, but not the one of a maintainer.

Set of methods and tools that consist in maintaining the different
versions of a software project, for all its files. It allows to:

» Go back into the past, to find why, when and by who a
specific portion of code was introduced

» Do regression finding by testing older versions not affected by
a regression

» Identify specific versions of the code as being released

> Allow parallel development: stabilization of the project,
development of multiple new features, etc.

e

> The server has all the history of the project
> Users only have a working copy

> All operations involve the central server, no code can be
exchanged without this server

» Each user has a local repository, with the full history of the
project

» No server is needed for any operation, everything can be done
locally: committing, creating branches and tags, merging, etc.

> Code can be exchanged with others without any central server

» Everything is local, and therefore very fast!

» And many more cool features!

» Until 2002, Linus Torvalds and the kernel developers were not
using any version control system, because none of the existing
one would scale enough for a project as large as Linux.

> In 2002, they started using BitKeeper, a proprietary

distributed version control system, for which a free (as in free
beer) was available.

> It proved that DVCS were useful for large free software
projects

» In 2005, a developer started to reverse engineer the BitKeeper
protocol in order to create a free (as in free speech)
compatible client

> In reaction, the company developing BitKeeper stopped the
free as in free beer client. The kernel community was left
without its version control system

» In March 2005, Linus Torvalds starts the development of Git,
with the first release published on 7th April 2005

» On 16th June 2005, the first Linux kernel managed by Git is
released

» When Git development started, many other DVCS were
started: Monotone, SVK, Mercurial, Darcs, Arch, Bazaar

» Six years later, only two free DVCS are still widely used: Git
and Mercurial, with Git having probably more than 90%
“market share” in the free software community

» Projects such as Gnome, Eclipse, KDE, the Linux kernel,
X.org, Freedesktop, Qt and many other open-source projects

» Nowadays, knowing Git is mandatory to contribute to
most open-source projects

$ mkdir myproject
$ cd myproject

$ git init
Initialized empty Git repository in .../myproject/.git/

$ 1s -al
drwxr-xr-x 7 thomas thomas 4096 2011-03-17 20:31 .git

$ 1s -al .git

drwxr-xr-x thomas thomas 4096 2011-03-17 20:31 branches
-rw-r—-r-- 1 thomas thomas 92 2011-03-17 20:31 config
-rw-r—--r-- 1 thomas thomas 73 2011-03-17 20:31 description
“rw-r--r—-— thomas thomas 23 2011-03-17 20:31 HEAD

thomas thomas 4096 2011-03-17 20:31 hooks
thomas thomas 4096 2011-03-17 20:31 info
thomas thomas 4096 2011-03-17 20:31 objects
thomas thomas 4096 2011-03-17 20:31 refs

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

P NDMNNERE RPN

drwxr-xr-x

» The project directory is the working copy: it will contain
directly the files of the project, that we can edit, modify,
commit, etc.. At any given time, the working directory allows
to edit one particular version of the project.

» The .git directory is the repository: it will contain the
complete history of the project.

Git maintains configuration at three levels:
> At the project level, in the .git/config file
> At the user level, in the "/ .gitconfig file
> At the system level, in the /etc/gitconfig file (rarely used)

The configuration can be edited:

» With the git config command. By default at the project
level, with ——global at the user level

» Manually by editing the configuration files

At the minimum, one must set its name and e-mail through the git
configuration: these informations are used to identify each commit.

git config --global user.name \
"Thomas Petazzoni"

git config --global user.email \
thomas.petazzoni@free-electrons.com

Resulting .gitconfig file:
[user]

name = Thomas Petazzoni
email = thomas.petazzoni@free-electrons.com

$ cat > README
This is a wonderful project
Ctrl+D

$ git add README

06

$ git status
On branch master
Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README

H OH B H OH O H H H

0o

$ git commit

Starts a text editor to define the commit message

[master (root-commit) 6ea2ecl] First commit.
1 files changed, 1 insertions(+), O deletions(-)
create mode 100644 README

or, alternatively:
$ git commit -m ¢ ‘My commit message’’

A commit message should be composed of:

> A first line that briefly summarizes the change. Should be less
than = 70 characters. Git will use it as the short description
of the commit.

» An empty line, separating the short description and the long
description.

» A long description, of arbitrary size. Most projects want this
to be wrapped at = 80 characters.

» A Signed-off-by: Foobar <foobar@company.com> line,

as requested by various projects. git commit -s adds the
SoB automatically.

9

net: fix rds_iovec page count overflow

As reported by Thomas Pollet, the rdma page counting can overflow. We
get the rdma sizes in 64-bit unsigned entities, but then limit it to
UINT_MAX bytes and shift them down to pages (so with a possible "+1" for
an unaligned address).

So each individual page count fits comfortably in an ’unsigned int’ (not
even close to overflowing into signed), but as they are added up, they
might end up resulting in a signed return value. Which would be wrong.

Catch the case of tot_pages turning negative, and return the appropriate
error code.

Reported-by: Thomas Pollet <thomas.pollet@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Grover <andy.grover@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

$ cat > foo.c

#include <stdio.h>

int main(void) {
printf("Hello world\n");
return O;

}
Ctrl+D

$ git add foo.c
$ git commit -s -m "foo.c: new program"

0o

$ git log
commit 43ed997a01891adbfe2cd9c5d41d23e7099068ct
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Tue Mar 29 20:17:39 2011 +0200
foo.c: new program
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
commit £01765d134d897f£373e70c4f1df7610b810392e
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Tue Mar 29 20:17:33 2011 +0200

Documentation for project

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Shows the history in reverse chronological order. Other orderings
are possible.

v

$ git log —p to show the patch together with each commit

v

$ git log foo.c to show the changes affecting a
particular file or directory

v

$ git log commitl.. commit? to show the changes
between two specific commits

v

$ git show somecommit to show the change done by a
particular commit

» The distributed nature of Git makes it impossible to provide a
linear revision number that monotonically increments over
time, as is done in Subversion or CVS

» Each commit is uniquely identified by a SHAI hash of its
contents

> For example:
£01765d134d897f£373e70c4f1df7610b810392¢
» One can also refer to it in a shorter-form, as long as it is
unique:
» $ git show f017
» $§ git show f01765d1

0o

commit f£01765d134d897ff373e70c4f1df7610b810392e
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Tue Mar 29 20:17:33 2011 +0200

Documentation for project
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

diff --git a/README b/README
new file mode 100644

index 0000000. .3803bca

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+This is a wonderful project

> Git does not directly commit all the changes you have your
working directory, as Subversion or CVS do

> Instead, Git requires you to stage the changes you would like
to commit, before doing the actual commit

» This is done through a special space, confusingly called the
index

» When used with partial-file staging (seen later), it is a very
powerful feature

git commit -a

git add git commit

git reset

A
A 4
N
y

git diff - git diff cached

0o

After adding one line to the README file and changing the message

in foo.c, we have:

$ git diff

diff --git a/README b/README
index 3803bca..bbdf5e3 100644
--- a/README
+++ b/README

@@ -1 +1,2 @@

This is a wonderful project
+really wonderful!
diff --git a/foo.c b/foo.c
index 0eb58fa9..0518d69 100644
--- a/foo.c
+++ b/foo.c

@@ -1,5 +1,5 @@

#include <stdio.h>

int main(void) {

- printf("Hello world\n");
+ printf("Bonjour Monde\n");

return O;

}

0o

Now, we stage the changes of foo. ¢ into the index:
$ git add foo.c

$ git diff --cached

diff --git a/foo.c b/foo.c
index 0eb58fa9..0518d69 100644
--- a/foo.c
+++ b/foo.c
@@ -1,5 +1,5 @@
#include <stdio.h>
int main(void) {
- printf("Hello world\n");
+ printf("Bonjour Monde\n");
return 0;

These are the changes inside the index, which will be committed if
 do git commit

0o

$ git diff

diff --git a/README b/README
index 3803bca..bbdf5e3 100644
--- a/README
+++ b/README

@@ -1 +1,2 @@

This is a wonderful project
+really wonderful!

These are the changes inside the working copy, left to be
committed in a later commit.

0o

$ git status

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: foo.c

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: README

#

0o

We commit the contents of the index:

$ git commit -m ‘‘foo.c: translate to french’’

[master 8f1fab2] foo.c: translate to french
1 files changed, 1 insertions(+), 1 deletions(-)

06

$ git show

commit 8f1fab278c876£8677b3b644bbb5403c11a676ea
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Tue Mar 29 21:22:41 2011 +0200

foo.c: translate to french

diff --git a/foo.c b/foo.c
index 0eb58fa9..0518d69 100644
--- a/foo.c
+++ b/foo.c
@@ -1,5 +1,5 @@
#include <stdio.h>
int main(void) {
- printf("Hello world\n");
+ printf("Bonjour Monde\n");
return 0;

0o

$ git diff

diff --git a/README b/README
index 3803bca..bbdf5e3 100644
--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project
+really wonderful!

» What if | want to commit all the changes | have in my working
directory, without bothering to stage them in the index 7

» You can use git commit -a
» What if you want to easily review your changes in order to
write your commit log 7

> You can use git commit —v, which will include the diff of
your commit inside the commit log

» git mv £1 £2 will move or rename one file or directory.
History is preserved accross renames.

» git rm 1 will remove one file or directory.

> In both cases, the change is done in the index and needs to be
committed.

> git
> git
> git
> git
> git
> git

init, initialize a repository

add, stage a file for commit

commit, commit changes in the index
Log, explore history

show, show one commit

reset, reset changes from the index to the working

directory

> git
> git

mv, move files

rm, remove files

There are three major object types in Git:
> The blob
> The tree
» The commit

All objects are identified by their SHAL.

0o

A blob simply allows to store the contents of a particular version
of a file, without its name. Just a chunk of binary data.

0o

A tree represents a directory, with pointers to blobs for the files
and pointers to trees for the subdirectories.

0o

A commit represents a particular commit, which associates a
particular state of a tree with an author, a committer and a
message, and also points to a parent commit.

0o

Raw informations about the latest commit:
$ git show --format=raw

commit 92179elealba3d62bc2f12463370c3£998ba7d62

tree cb241cl1cB8a626e7e7b7e8a4b57eebd6e6e2393aal

parent £c8911d4b0da304ca6ff9b1fc93ce3f2fbdd1008

author Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427783 +0200
committer Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427783 +02

Update documentation

diff --git a/README b/README

index 3803bca..bbdfb5e3 100644
--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a wonderful project

+really wonderful!

0o

Let's look at the tree:

$ git ls-tree
c5241c1c8ab26e7e7b7e8adb57eebdb6eb6e2393aal
100644 blob bbdf5e3c38e09706b6cb9ca0d87af9d4940e58b1 README

100644 blob 0518d6958a90b7ae45530€93632967826b0ee3d4 foo.c
040000 tree 7751df8a2c450e0860c311fedeff797dd912bdal src

Let's look at one of the blobs:
$ git show
bbdf5e3¢c38e09706b6cb9cald87af9d4940e58b1

This is a wonderful project
really wonderful!

0o

Let's look at the parent commit:
$ git show --format=raw
£c8911d4b0da304cabff9b1fc93ce3f2fbdd1008

commit fc8911d4b0da304cabff9blfc93ce3f2fbdd1008

tree fed70e7fea02547c4ebb74122c98a3¢c268586377

parent 4fc1910b790f6bba82b9eafab297146cd0c9e2f5

author Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427777 +0200
committer Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 1301427777 +02

bar.c: new source file

diff --git a/src/bar.c b/src/bar.c
new file mode 100644

index 0000000..c5853ff

--- /dev/null

+++ b/src/bar.c

@e -0,0 +1,3 @@

+int bar(void) {

+ return 42;

+}

9

Let's look at the root tree for this commit:
$ git ls-tree
fed70e7fea02547c4ebb74122c98a3¢c268586377

$ git 1s-tree fed70e7fea02547c4ebb74122c98a3c268586377
100644 blob 3803bcal2517a0974a6eb979b7b17e6£0941d550 README
100644 blob 0518d6958a90b7ae45530e93632967826b0ee3d4 foo.c
040000 tree 7751df8a2c450e0860c311fedeff797dd912bdal src

We have the same blob for foo.c, the same tree for src, but a
different blob for README, this is because the commit changed the
README file.

Let's look at the state of the README file at this commit:

$ git show
3803bcal2517a0974a6eb979b7b17e6£0941d550

This is a wonderful project

» Branches are probably one of the most powerful and useful
feature of Git

» While traditional VCS make branches difficult to create and
manage, Git makes it very easy

» Branches are kept completely local, allowing each developer
to organize its work in has many branches as he wants

» Branches are cheap, so typically a developer would create a
branch even for a very small work (fixing a bug, etc.)

» Branches can be merged together, or exchanged with other
developers

» One can list all local branches using git branch
» By default, there is a master branch

» The current branch is highlighted with a star
$ git branch

* master

> To create a branch: git branch branchname. The branch
is created from where you are as the starting point.

» To switch to a branch: git checkout branchname
» To do both at once: git checkout -b branchname

» When you are in a branch, all commits you do end up in the
current branch

$ git branch

* master

$ git branch fix-bug
$ git branch

fix-bug
* master

$ git checkout fix-bug

Switched to branch ’fix-bug’

$ git branch

* fix-bug
master

0o

$ emacs src/bar.c

$ git commit -a -m ‘‘bar.c: fix bug with ret
val’’

$ git log master..

commit ac4d966da54b24d784854cabb0c72855aa4badth

Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

Date: Tue Mar 29 22:20:22 2011 +0200

bar.c: fix bug with ret val

9

Gitk is a Git history visualizer, started with gitk --all, it shows
the history for all branches:

foo.c: fix message
bar.c: fix bug with ret val
Update documentation
bar.c: new source file

foo.c: translate to french

foo.ct new program

Documsntation for project

» Branches are just pointers to the latest commit in this
particular branch

» Thanks to the parent pointer in each commit, Git can go back
inside the history

» The branches are described as SHA1 stored in simple text files
in .git/refs/heads

» HEAD is a special pointer that always points to the latest
commit in the current branch

v

If you have split your work in several branches and want to
merge them together.

v

Go to the destination branch (where things should be merged)

v

Use the git merge branchname command

v

Contrary to Subversion, all the branch history will be
preserved, even if the branch gets deleted.

bar.c: fix another bug with ret val
bar.c: fix bug with ret val

foo.c: fix message
Update documentation

bar.c: new source file

foo.c: translate to french

foo.c: new program

Documentation for project

0o

$ git checkout master
Switched to branch ’master’
$ git merge fix-bug

Updating 92179el..10e8da2
Fast-forward
src/bar.c | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

bar.c: fix another bug with ret val
bar.c: fix bug with ret val

foo.c: fix message

Update documentation

bar.c: new source file
foo.c: translate to french
foo.c: new program
Documentation for project

$ git branch -d fix-bug
Deleted branch fix-bug (was 10e8da2).
Note: git branch -d only works with completely merged

branches. If you want to remove a non-merged branch, you need to
use git branch -D.

bar.c: fix another bug with ret val
bar.c: fix bug with ret val

foo.c: fix message
Update documentation

bar.c: new source file

foo.c: translate to french

foo.c: new program

Documentation for project

There are many ways to refer to commits, or range of commits:

>

master..mybranch, all commits between master and
mybranch

master. ., all commits from master to where you are
HEAD is the latest commit

HEAD"™ is the parent of the latest commit

HEAD~3 is the grand-grand-parent of the latest commit

master..mybranch
master..
HEAD^
HEAD~3

» Obviously, since Git is distributed, you can communicate with
remote servers.
» This is typically done using the following commands
» git clone
» git push
» git pull

» Cloning is the operation that consists in cloning a complete
repository to your local machine and creating a working copy
for the master branch.

» Done with git clone server-url

» Useful when you're not starting a project from scratch, but
want to contribute to an existing project.

» git clone is needed only once, just like svn checkout
with Subversion (not to be confused with git checkout !)

> It will setup an initial remote named origin which points to
the server you have cloned from.

Git repositories can be accessed:

» Through the git:// protocol, which is the native git
protocol, offering the best performance. For read-only access
only. Usually the best solution to clone a project.

» Through the http:// protocol. For read-only access, lower
performance than git://. Mostly useful if you are behind a
firewall that doesn't allow git://.

» Through the ssh:// protocol. For read-write access.

0o

$ git clone git://git.busybox.net/buildroot

Initialized empty Git repository in /tmp/buildroot/.git/

remote: Counting objects: 68156, done.

remote: Compressing objects: 100% (25281/25281), done.

remote: Total 68156 (delta 46316), reused 64299 (delta 42543)
Receiving objects: 1007 (68156/68156), 25.22 MiB | 185 KiB/s, done.
Resolving deltas: 100% (46316/46316), done.

» Pulling is the operation that consists in fetching changes
from a remote repository and merging them into the current
local branch

» Under the hood, git pull does git fetch and then git
merge
» Typically, one keeps the master branch free of any local
change, and updates it with a simple git pull command.
Equivalent to svn update in the Subversion world.

» By default, pulls from the master branch of the origin
repository.

» Can also be used to merge contents from other remote
repository, if you're integrating the work of other developers.

0o

$ git pull

Updating 2c97608..187ca32
Fast-forward

package/Makefile.autotools.in | 2 +
package/buildroot-libtool-v2.4.patch | 47 ++++++++++++H+ b
package/qt/qt.mk | 2 +-

3 files changed, 50 insertions(+), 1 deletions(-)
create mode 100644 package/buildroot-libtool-v2.4.patch

» A centralized workflow, which is similar to Subversion
workflow. There is a central Git repository on a public server,
and all project participants have write access to it. They can
simply git push their changes to it.

» A distributed workflow, where only the project maintainer
has write access to the official Git server. This is the workflow
used by many free software projects, such as the Linux kernel.

edit, commit, edit, commit

Maintainer private repository

edit, commit, edit, commit

Patches

» Do a bare clone of your repository (a clone without a working

copy)
git clone --bare /home/thomas/myproject
» Make it work through HTTP
cd myproject.git
git --bare update-server-info
mv hooks/post-update.sample hooks/post-update
chmod a+x hooks/post-update

» Transfer the bare clone to a remote location, publicly
accessible, on which you have write access:
scp -r myproject.git
login@somewhere.com:~/public_html

login@somewhere.com:~/public_html

> You can access your repo at
login@somewhere.com: ~/public_html/project.git
» Others can access your repo at
http://somewhere.com/~login/project.git

login@somewhere.com:~/public_html/project.git
http://somewhere.com/~login/project.git

» To push the current branch:
git push
login@somewhere.com: ~/public_html/project.git
» To push the branch named foobar to a branch named
barfoo on your remote repository:
git push
login@somewhere.com:~/public_html/project.git
foobar:barfoo

> To delete the remote branch barfoo:
git push
login@somewhere.com: ~/public_html/project.git
:barfoo

login@somewhere.com:~/public_html/project.git
login@somewhere.com:~/public_html/project.git
login@somewhere.com:~/public_html/project.git

With git branch -a you can list all branches, both local and
remote ones.

» Typing the complete URL of a remote is painful.

» Git offers a command, git remote, to manage aliases for
remotes. These aliases can then be used with all Git
commands, especially git pull and git push

» git remote add thealias theurl adds a remote

» git remote rm thealias removes a remote

» git remote shows all remotes

» git remote show thealias gives details about a remote

» git remote prune thealias to delete all branches that
no longer exist remotely

> A remote origin is created by git clone, it refers to the
server from which the repository was cloned, and is used as
the default for pull/push.

» All remote aliases are stored in .git/config

» Typically useful for your public repository, but also for the
public repositories of the developers you're working with.

» Add a remote for my public repository:

git remote add public

login@somewhere.com: ~/public_html/project.git
» Push the current branch to it:

git push public

login@somewhere.com:~/public_html/project.git

el N

Clone

Create branch for feature development or bug fix
Make changes, make one or more commit

Either

> Push the branch to a public repository
> Tell the project maintainer to pull your branch

or
» Send patches by e-mail

Once the changes are merged: remove the branch and git

pull your master branch

Goto step 2

» Helps in sending an e-mail to ask the maintainer to pull one of
your publicly visible branch.

> Make sure your branch is publicly visible and up-to-date:
git push public mybranch

> Prepare the text for the pull request:
git request-pull master
http://somewhere.com/~login/project.git

» The master in the command is the starting point of the
interval of commits for which the pull request is generated.

» Send the text by e-mail to the maintainer.

http://somewhere.com/~login/project.git

0o

$ git request-pull master
http://somewhere.com/~login/project.git

The following changes since commit 10e8da2b115bab3419a28e9af52a5d67c3£797cc:
bar.c: fix another bug with ret val (2011-03-29 22:28:58 +0200)

are available in the git repository at:
http://thomas.enix.org/pub/demo.git fix-another-bug

Thomas Petazzoni (2):
foo.c: fix message
foo.c: more messages

foo.c | 3 ++-
1 files changed, 2 insertions(+), 1 deletions(-)

http://somewhere.com/~login/project.git

» Another way of contributing is to send patches to a mailing
list. It allows other to review and comment your patches.

> Patches are generated using git format-patch, the short
description is used as the title, the long description as the
changelog of the patch

» Patches are sent using git send-email

» git send-email requires a properly configured SMTP
setup:

» git config --global sendemail.smtpserver
foobar.com

» git config --global sendemail.smtpuser
user

» git config --global sendemail.smtppass
pass

0o

$ git format-patch master

0001-foo.c-fix-message.patch
0002-foo.c-more-messages.patch

$ git send-email --to mailing@project.org *.patch

To: thomas@enix.org
Subject: [PATCH 1/2] foo.c: fix message
Date: Tue, 29 Mar 2011 23:57:10 +0200

To: thomas@enix.org
Subject: [PATCH 2/2] foo.c: more messages
Date: Tue, 29 Mar 2011 23:57:11 +0200

» git config --global sendemail.confirm auto
avoids the need to confirm the sending of each message

» git config --global sendemail.chainreplyto
false avoids to have each e-mail being a reply to the
previous one: all patches are attached directly to the main
mail

» git send-email --compose opens a text editor to write a
special text for the introduction message

» Patches formatted with git format-patch are better than
normal patches, as they properly handle binary files and file
renames/removal.

» A maintainer can integrate a patch sent by git
send-email using the git am command.

= [Buildroot] [pull request] Pull request for branch for-2011.02/python-bump Thomas Petazzon 24/01/11
[Buildroot] [PATCH 01/10] python: Move to version 2.7 Thomas Petazzon 24/01/11
[Buildroot] [PATCH 02/10] python: Port the python2.4 patches to 2.7 Thomas Petazzon 24/01/11
[Buildroot] [PATCH 03/10] python: Add the needed patches to compile python2.7 in buildroot. Thomas Petazzon 24/01/11
[Buildroot] [PATCH 04/10] python: Fix make install (Workaround python's bug #1669349) Thomas Petazzon 24/01/11
[Buildroot] [PATCH 05/10] libffi: new package Thomas Petazzon 24/01/11

= [Buil] [PATCH 06/10] allow host package to use <pkg>_MAKE_ENV and <pkg: Thomas Petazzon 24/01/11

= Re: [Buildroot] [PATCH 06/10] autotools: allow host package to use <pkg>_MAKE_ENV and < Peter Korsgaard 24/01/11
~ Re: [Buildroot] [PATCH 06/10] autotools: allow host package to use <pkg>_MAKE_ENV and Thomas Petazzon 25/01/11

Re: [Buildroot] [PATCH 06/10] autotools: allow host package to use <pkg>_MAKE_ENV anc Peter Korsgaard 25/01/11
[Buildroot] [PATCH 07/10] python: convert to autotargets, bump to 2.7.1, many improvements Thomas Petazzon 24/01/11

= [Buildroot] [PATCH 08/10] Remove .py or .pyc depending on Python configuration Thomas Petazzon 24/01/11
Re: [Buildroot] [PATCH 08/10] Remove .py or .pyc depending on Python configuration Peter Korsgaard 24/01/11
~ [Buildroot] [PATCH 09/10] python-serial: new package Thomas Petazzon 24/01/11
Re: [Buildroot] [PATCH 09/10] python-serial: new package Peter Korsgaard 24/01/11
~ [Buildroot] [PATCH 10/10] python-mad: new package Thomas Petazzon 24/01/11
Re: [Buildroot] [PATCH 10/10] python-mad: new package Peter Korsgaard 24/01/11
~ Re: [Buildroot] [pull request] Pull request for branch for-2011.02/python-bump Thomas Petazzon 25/01/11
Re: [Buildroot] [pull request] Pull request for branch for-2011.02/python-bump Peter Korsgaard 25/01/11

To review changes made by other developers that are visible
through their public repository, one can do:

$ git fetch thedeveloper

then all branches made by the other developer are accessibles as
remotes/thedeveloper/branchname

$ git log -p
master..remotes/thedeveloper/somebugfix

» You create a branch
» You do some work on this branch, with several commits

» The development goes on in the official project, with several
changes being made

» How can you update your changes on top of all the
improvements done by the other developers ?

» Solution: git rebase

More documentation
bar.c: more fixes

bar.c: fix another bug with ret val
bar.c: fix bug with ret val

remotes/public
foo.c: fix message

Update documentation

foo.c: more messages

The branch fix-another-bug is behind master

06

$ git checkout fix-another-bug
$ git rebase master

First, rewinding head to replay your work on top of it...
Applying: foo.c: fix message
Applying: foo.c: more messages

foo.c: more messages
foo.c: fix message

More documentation

bar.c: more fixes

bar.c: fix another bug with ret val

bar.c: fix bug with ret val
foo.c: fix message
Update documentation

foo.c: more messages

The branch fix-another-bug is on top of master

> You develop
> You commit
» You develop
» You commit
» Qops, | forgot this, you fix, you commit

» — you have an ugly history, which means ugly patches that
show how stupid you are to the rest of the project members

» Git allows you to hide your stupidity!

> Your friend is interactive rebasing, using git rebase -1

> You are in branch fix-another-bug, which has been
started on top of the master branch

» You run git rebase -1 master

> A text editor will open, with one line per commit in your
branch. Each line is prefixed with piclk. With each line you

can:

>
>

Keep the pick, the commit will be kept

Remove the line, which will completely remove the commit
from the history

Change pick to edit, which will stop the rebase at the
given commit, which allows to make further modifications to it
Change pick to reword, which allows to rephase the
commit log

Change pick to fixup, which merges the commit into the
previous one

Change pick to squash, which merges the commit into the
previous one and edits the commit message

commit 2644e423d9b3f5514284f49f207cd4f7a8e8a764
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:50:41 2011 +0200
Really fix the return value
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons
commit 874a6a0e3f0058a84dd857d2ef68£8b71cb3aebb
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:50:27 2011 +0200
Fix return value
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons
commit 87b3b0c7e8905d9c0328508050c5e0b596b873ct
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:50:13 2011 +0200
foo.c: add englich
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons
commit 969387105cfcc70562a88dd8505c57418bd4354f
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:49:52 2011 +0200

foo.c: add spanish

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons

.com>

.com>

.com>

.com>

What | want is:
» Fix the commit message in
87b3b0c7e8905d9c0328508050c5e0b596b873ct
» Merge 2644e423d9b3£5514284f49f207cd4f7a8e8a764
into 874a6a0e3f0058a84dd857d2ef68f8b71cb3aebb

$ git rebase -i master
It opens a text editor with:

pick 9693871 foo.c: add spanish

pick 87b3b0c foo.c: add englich

pick 874a6a0 Fix return value

pick 2644e42 Really fix the return value

Rebase 974cd34..2644e42 onto 974cd34

#
#
Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit’s log message
#

#

#

If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.

0o

You change it to:

pick 9693871 foo.c: add spanish

reword 87b3b0Oc foo.c: add englich

pick 874a6al0 Fix return value

fixup 2644e42 Really fix the return value

commit ¢332772£74bbc808105e4076bbb821d762c9653f
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:50:27 2011 +0200
Fix return value
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
commit 06a174ee4426cb83004614cf64a33c12c42670b0
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:50:13 2011 +0200
foo.c: add english
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
commit 969387105cfcc70562a88dd8505c57418bd4354f
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Mar 30 15:49:52 2011 +0200

foo.c: add spanish

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

» git rebase is a tool that rewrites the history: it merges,
splits, and changes commits

» Therefore, if other people had access to a branch you created,
you should never rebase on this branch, unless others are well
informed that the branch might get rebased

» Rebasing is only useful to make modifications before showing
your work to others.

» Wondered why the index thing is so cool ?
» Because you can stage only parts of the modification made to
a given file to the index for committing!
» git add --patch myfile
will ask for each chunk of the patch:
» if you want to stage it, and possibly all other chunks
» if you don’t want to stage it, and possibly quit now
» if you want to split the chunk into smaller chunks
» Another possibility is git add -1, for interactive adding

0o

$ git diff

diff --git a/foo.c b/foo.c
index 0518d69..6371bb4 100644
--- a/foo.c
+++ b/foo.c
@@ -1,5 +1,6 @@
#include <stdio.h>
+#include <stdlib.h>
int main(void) {
printf ("Bonjour Monde\n");
- return O;
+ return 1;

}

0o

$ git add --patch foo.c

diff --git a/foo.c b/foo.c
index 0518d69..6371bb4 100644
--- a/foo.c
+++ b/foo.c
@@ -1,5 +1,6 @@

#include <stdio.h>
+#include <stdlib.h>

int main(void) {

printf ("Bonjour Monde\n");

- return 0O;
+ return 1;

}

Stage this hunk [y,n,q,a,d,/,s,e,?]?

O

Let's split the commit:

Stage this hunk [y,n,q,a,d,/,s,e,?]? s

stage the first chunk:

Split into 2 hunks.
@@ -1,3 +1,4 @@
#include <stdio.h>
+#include <stdlib.h>
int main(void) {
printf ("Bonjour Monde\n");
Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]1?7 y

and skip the last chunk:

@@ -2,4 +3,4 @@
int main(void) {
printf("Bonjour Monde\n");
- return O;
+ return 1;
¥
Stage this hunk [y,n,q,a,d,/,K,g,e,?]1? q

0o

$ git diff --cached

diff --git a/foo.c b/foo.c
index 0518d69..41d6359 100644
--- a/foo.c
+++ b/foo.c
@@ -1,4 +1,5 @@
#include <stdio.h>
+#include <stdlib.h>
int main(void) {
printf ("Bonjour Monde\n");
return 0O;

0o

$ git diff

diff --git a/foo.c b/foo.c
index 41d6359..6371bb4 100644
--- a/foo.c

+++ b/foo.c

@@ -2,5 +2,5 @@

#include <stdlib.h>

int main(void) {

printf ("Bonjour Monde\n");

- return O;

+ return 1;

}

» Version control systems can usually be told to ignore certain
file names or file name patterns.

» With Git, this is done in .gitignore files

» Each directory can have a .gitignore file, but Git travels
back through the parent directories to find other
.gitignore files

» For example, you can have a global .gitignore file at the
root of your project that ignores * .0, and another
.gitignore file in a sub-directory to ignore a particular file.

>

Bisecting, to quickly find the commit that introduced a
regression

git reset has many more features to reset the state of the
index or the working copy

git stash to put uncommitted changes on the side while
doing something else

g1t blame to check which of your colleague introduce this
stupid bug

» Tags, with git tag

v

vVvyVvyy

git filter-branch, to rewrite a complete branch to make
modifications on several commits

g1t svn, for integration with Subversion repositories

git daemon and Gitosis to create a Git server

Git submodules

Graphical interfaces: Giggle in Gtk, QGit in Qt, EGit in
Eclipse, etc.

» Git for h itori r Gith

Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Slides under the Creative Commons BY-SA 3.0 license.

